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Abstract — In this paper the Local Point Interpolation 

Method (LPIM) is used with a modified visibility criterion to 

handle material discontinuities. In general, visibility criterion 

is applied only to shape function generation. We present a 

modified version where it is also applied to the integration 

process. The method is simpler and more robust than other 

techniques often employed on multi-materials problems, with 

a straightforward implementation. 

I. INTRODUCTION 

Meshless methods are numerical techniques to solve 

boundary value problems [1]. They were developed with 

the goal of eliminating the need of mesh generation, 

working only with nodes without a prescribed connectivity 

among them [1]. 

In this paper we use the Local Point Interpolation 

Method (LPIM) [1]. LPIM works with local weak forms 

and uses the Point Interpolation Method (PIM) to build its 

shape functions, which satisfy the Kronecker delta property, 

i.e., the boundary conditions are easily imposed [1]. 

Most of the work done so far with LPIM is limited to 

problems dealing with one material, as we can see in [1], or 

problems with simple geometry formed by two materials 

handled by a single interface. Besides that, we do not see in 

literature multiple materials problems with sources terms. 

As it can be seen in [2]-[3], material discontinuity can be 

treated by enforcing conditions on the potential and its 

normal derivative using duplicated points and a collocation 

method. Reference [4] adds a special jump function as a 

shape function to reproduce the discontinuous behavior. In 

[5] the interface problem is dealt applying the visibility 

method on the shape functions, meaning that nodes are used 

to compute shape functions only for their own material or 

for the surrounding interface. 

We present a different approach for dealing with the 

problem: a visibility method on both shape function 

construction and integration process. With this technique 

we are able to solve problems of multiple materials, 

interfaces and existing sources terms. As will be seen, the 

method is more robust, especially when compared to 

collocation methods, and also simpler, once there is no need 

to use special shape functions neither to duplicate nodes. 

II. LOCAL POINT INTERPOLATION METHOD 

Magnetostatic problems in 2D can be described by 
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where � is the magnetic reluctivity, 	
 is the current density 

and � is the magnetic vector potential z-component. 

Boundary conditions are given by (2) on Dirichlet boundary 

��, Neumann boundary � and on the interface �� between 

materials. 
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A local weak form can be obtained for each quadrature 

domain ���  (Fig. 1) 
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Petrov-Galerkin formulations allow the use of shape and 

test functions belonging to different spaces. We choose 

Heaviside step test functions and the first integral over 

domain vanishes. The resultant local equation is 

 � � ���� ��#$%&$'%
� �� 	
� !

�� " � ���
#$(%

�� (4) 

 

The PIM shape functions are generated using radial and 

polynomial basis functions (RPIMp). Once they satisfy the 

Kronecker delta property, Dirichlet boundary conditions are 

easily enforced [1]. 

 
Fig. 1. Domain representation Ω with boundary Γ. Ω = Ω1 U Ω2. Γ is the 

union of Dirichlet (Γg), Neumann (Γh) and interface (ΓI) boundaries. For a 

quadrature domain Ωq
i defined for node i, Γq

i is the union of Dirichlet 

(Γqg
i), Neumann (Γqh

i), internal (Γqi
i) and interface (ΓqI

i) boundaries. 

III. TREATING MATERIAL DISCONTINUITIES 

Consider a domain with two different materials 

separated by the interface �� as shown in Fig. 1. To apply 

the visibility criterion we first split all nodes into three sets: 

S1, S2 and SI, where S1 contains all the nodes that belong 

exclusively to region 1 (e.g. nodes j, m, k), S2 contains the 

nodes belonging exclusively to region 2 (e.g. nodes n, p) 

and SI is a set containing the nodes lying on �� (e.g. node i). 
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For shape function construction the procedure is the 

same as in [1]. The support domain of a point from region 1 

contains nodes from S1 and SI. Similarly, the support 

domain of a point from region 2 contains nodes from S2 and 

SI. Finally, the support domain of a point on �� contains 

nodes from S1, S2 and SI. 

For the local weak form integration, if we are 

integrating over a local domain of a node from S1, only the 

geometry corresponding to region 1 is used. �� is considered 

as an internal boundary and the integration follows (4). For 

node k, for example, the resulting local domain is as shown 

in Fig. 1 and all the local boundaries are considered 

internal. The same idea is applied in region 2. 

A node i at �� has local quadrature domain in both 

regions 1 and 2, as in Fig. 2, and �� is considered separately. 

For regions 1 and 2, we have, respectively, (5) and (6). 
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As we are integrating the whole local domain, we have 

to add (5) and (6). As the interface boundary is the same for 

both domains (����� � �����), �,-� � ��,-�, and the RPIMp shape 

functions possess the Kronecker delta property, from (2) the 

two integrals for ����� and ����� are cancelled. The final 

expression for the interface node local quadrature domain is 
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(7) 

 
Fig. 2. Local integration domain for a node i at interface. Visibility 

criterion is applied splitting domain Ωq
i into two: one belonging to region 1 

(Ωq
i1) and the other belonging to region 2 (Ωq

i2). 

IV. NUMERICAL RESULTS AND CONCLUSIONS 

An electromagnet problem is solved using the discussed 

technique. The implementation is held by the framework 

presented in [6]. The relative magnetic reluctivities are 

�.�/ � �01223/ � 4 and ��/15 � 4678. The current density 

is 	
 � 467� (MA/m
2
). Fig. 3 shows the LPIM solution 

using 1288 nodes evenly distributed, 4 integration points 

for boundary integration and 1 integration point for domain 

integration. Rectangular quadrature domains and linear 

polynomials with cubic spline radial basis function [1] for 

RPIMp are used. 

The convergence rate is also investigated using four sets 

of different nodes distribution. The result is compared to 

FEM approximation (Fig. 4). The reference solution for 

computing the error norm is the FEM solution with 10
6
 

nodes. Both methods have almost the same convergence 

rate (1.39 for LPIM and 1.34 for FEM) and LPIM achieves 

more accurate solution than FEM. 

 
Fig. 3. Magnetic vector potential distribution evaluated by LPIM. 

 

Concluding, we can say that the new visibility technique 

to handle material discontinuities in LPIM is robust since it 

works with integration around interfaces. Its 

implementation is also very simple, since there is no need 

to duplicate nodes.  

 
Fig. 4. Error norm for LPIM with RPIMp shape function and for FEM. h is 

the distance among nodes. � is the reference solution and � is the 
approximated numerical solution. 
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